Image quality
Technical/physical aspects
Nationella kvalitetsdokument för digital radiologi AG1

Michael Sandborg och Jalil Bahar
Radiofysikavdelningen Linköping

2007-05-10
Requirements on QA-tests

- Objective
- High precision
- Quick and simple
- Available
- (Universal and automatic)
Inspiration from

Statens strålskyddsinstitut
Projekt P1069.98

Utvärdering av datortomograferos doseeffektivitet

Peter Hägglund, Rolf Johansson och Göran Wickman
Institutionen för strålningsvetenskaper Umeå Universitet

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Method

- Objective measures to characterise imaging systems (or detector) performance exists – i.e. MTF, NPS, NEQ and DQE
 - Difficult to adapt and time-consuming

- but simple visual evaluation of test phantoms are often used in practice …
 - # of visible low- and high-contrast details
 - Simple but rather imprecise (subjective)
Suggestion

- **LDI**: _Low-contrast Detection Index_

is
 - Objective
 - Precise
 - Reproducible
 - Semi-quick?
Material

- Leeds To10 phantom (SN174)
- Philips Digital Diagnost (2001)
- 4 x 5 cm PMMA blocks
- Barracuda MPD kerma-meter
- Same image processing (Unique) ‘Bäcken’
- FDA=100 cm
- 25 x 25 cm field size
- No table top cushion
- Manuel exposure
Material

- Leeds To10 phantom (SN174)
- Philips Digital Diagnost (2001)
- 4 x 5 cm PMMA blocks
- Barracuda MPD kerma-meter
- Same image processing (Unique) ‘Bäcken’
- FDA=100 cm
- 25 x 25 cm field size
- No table top cushion
- Manuel exposure
A circular ROI is applied. Average p.v. and s.d. is measured.
Measure p.v. and s.d. on top and beside the detail.
Method

Uncorrected

Pixel value

Contrast Detail

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Method

Uncorrected

Contrast Detail

Pixel value

bkg+SD

obj-SD

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Method

Uncorrected linear reg, LDI

Pixelvärde

Kontrastdetalj nr

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Method

Corrected linear reg, LDI

Pixel value

Contrast Detail

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Corrected linear reg, LDI

Pixel value

Contrast Detail

bkg+SD
obj-SD
Linjär (obj-SD)
Linjär (bkg+SD)
Method

Corrected log reg, LDI

Pixel value

Contrast Detail

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

bkg+SD
obj-SD
Logg. (obj-SD)
Logg. (bkg+SD)
Repeat 3-5 times
Method

5 image samples

\[\text{LDI} = 4.91 \pm 0.06 \]

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Results: **Uncertainty**

![Graph showing uncertainty in LDI with increasing number of sample images. The graph plots the number of sample images on the x-axis, and the 2 standard deviations in LDI on the y-axis, with a downward trend indicating reduced uncertainty as the number of sample images increases.]
Results: Uncertainty

Number of sample images in estimate of LDI

\[2 \text{ S.D. in LDI (\%)} \]

3 images samples are recommended
Uncertainty
Uncertainty

• Uncertainty is stable with
 - Bit-depth
 - Detector dose
Uncertainty

- Uncertainty is stable with
 - Bit-depth
 - Detector dose

- BUT very important to set up and align the phantom and x-ray unit in a consistent way!
Uncertainty

• Uncertainty is stable with
 - Bit-depth
 - Detector dose

• BUT very important to set up and align the phantom and x-ray unit in a consistent way!

• Keep detailed notations and document x-ray unit set up (photograph)
Uncertainty

- Uncertainty is stable with
 - Bit-depth
 - Detector dose
- BUT very important to set up and align the phantom and x-ray unit in a consistent way!
- Keep detailed notations and document x-ray unit set up (photograph)
Applications / tests of method

- LDIs dependence on
 - bit-depth
 - kV
 - ESAK
Results: Different Bit depth

81kV, ESAK=1.3mGy

Mann-Whitney
p=0.91

±2S.D.

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Results: Different kV

ESAK=1.3mGy

±2S.D.

Tube Voltage (kV)

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Results: Different ESAK

81 kV

±2S.D.
Results: Correlations

Subjective v.s. Objective assessment

Visuell (subjective) assessment vs. LDI (objective) assessment

$r^2 = 0.90$

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Conclusions and further work

- LDI method seem ´appropriate´ for QA-test
- Further tests and validations of sensitivity to different
 - image processing schemes
 - dynamic range of image data
 - X-ray units
 - sizes of contrast detail
 - test phantoms
- Automatic image assessment with software
Conclusions and further work

- LDI method seem ´appropriate´ for QA-test
- Further tests and validations of sensitivity to different
 - image processing schemes
 - dynamic range of image data
 - X-ray units
 - sizes of contrast detail
 - test phantoms
- Automatic image assessment with software

Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping
Comments ?!
Comments ?!

• Please send comments and suggestions for improvement to
 – Jalil.Bahar@lio.se or
 – Michael.Sandborg@lio.se